RESILIENT PROVISION OF ECOSYSTEM
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TRADE-OFFS INVOLVING MEANS AND
VARIANCES OF WATER
QUALITY IMPROVEMENTS
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We assess the trade-offs and synergies involved in reducing agriculture-generated nutrient loads with
different levels of resilience. We optimize the selection of least-cost patterns of agricultural conserva-
tion practices for both the expected performance of the conservation actions and its variance.
Securing nutrient loads with a higher level of resilience is costly, with marginal costs of resilience
generally declining with lower loads. We find that the main trade-off dimension is between cost of
conservation investments and ecosystem service objectives, as opposed to pronounced mean-
variance or between-nutrient objectives trade-offs. We find relative synergies in agricultural conser-

vation investments aimed at nutrient reductions.
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In recent years, the concept of ecosystem ser-
vices and natural capital has garnered signifi-
cant attention from the research, policy, and
conservation community (see, for example,
Heal and Small 2002; Boyd and Banzhaf 2007;
Zhang et al. 2007; Polasky and Segerson 2009;
Barbier 2015; and a special feature in the
Proceedings of National Academy of Sciences
in 2015 devoted to the topic). For intensively
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managed agriculturally dominated landscapes,
there can be both complementarities and com-
petition between ecosystem services, including
the provisioning services of food, feed, fuel,
and clean water, the regulating service of waste
processing (provided by streams), and the
cultural ecosystem services tied to the pres-
ence of wildlife for hunting or recreation.
Given the signals provided by agricultural
markets, it is not surprising that the agricultural
system heavily favors production of private
ecosystem services (food, feed, and fuel)
(Lichtenberg 2002, 1254). The Midwestern
United States, for example, has the highest
rates of crop growth in the world, to the point
that agriculture affects regional climate
(Mueller et al. 2016). At the same time, heavy
reliance on fertilizer use has caused some scien-
tists to suggest that humanity has exceeded its
“safe operating space” with respect to nutrient
loads (Steffen et al. 2015).

The recognition of these issues has led to
extensive agri-environmental policy efforts in
the United States and elsewhere, as well as
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literature identifying approaches for incorporat-
ing ecological objectives in policy (Lichtenberg
2002; Lankoski and Ollikainen 2003; Bateman
et al. 2013). While these efforts have found
some success, most scientific assessments of en-
vironmental impacts of U.S. agriculture indicate
many remaining concerns. Some of these con-
cerns include fish and wildlife habitat (U.S.
Department of  Agriculture-Conservation
Effects Assessment Project, Wildlife National
Assessment 2015), air pollution (Mueller,
Mendelsohn, and Nordhaus 2011), and nutri-
ent pollution (U.S. Environmental Protection
Agency [EPA] 2015).

Understanding trade-offs or potential syner-
gies (e.g., Karp et al. 2015) requires two things."
First, it is necessary to understand the underly-
ing ecosystem service production process and
the economic inputs that go into their produc-
tion.> However, the ecological production func-
tions themselves are often poorly understood
and may exhibit complex nonlinear dynamics
with thresholds (e.g., Carpenter et al. 2015;
Barbier et al. 2008). Even in the best case of
relatively small scientific uncertainty, they may
be represented by computer simulation pro-
grams that do not correspond to traditional
economic understanding of a production func-
tion (e.g., Heal and Small 2002).

A second component of a meaningful eval-
uation of trade-offs is an understanding of
how nonmarket ecosystem services can be
improved at the lowest sacrifice to marketed
goods (i.e., the trade-offs given by a relevant
Pareto-efficient frontier). One dimension of
the trade-offs between different classes of
ecosystem services is uncertainty in the provi-
sion of a particular joint product from an eco-
system. In addition to having different
opportunity costs, alternative ecosystem ser-
vice bundles can differ in terms of the risk as-
sociated with their provision. That is, some
conservation investments may consistently
yield a given bundle of ecosystem services
while others may on average yield a higher
level of services, but with a wider variability
of provision over time. Thus, the mean-

! Heal et al. (2001) called the presence of synergies a “conser-
vation umbrella.”

2 See Heal and Small (2002) for an interesting distinction be-
tween economic and noneconomic inputs into the ecosystem ser-
vices production function. Economic inputs have opportunity costs,
while others, like sunlight needed for agricultural production, al-
though essential, are noneconomic. In our application, economic
inputs include foregoing crop production entirely and planting pe-
rennial grass or bringing machinery, expertise, and labor inputs for
the adoption of “working land” conservation practices.
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variance trade-off for a particular cost of con-
servation investment may be relevant in pol-
icy (e.g., Ando and Mallory 2012).

Consideration of trade-offs between means
and variances of ecosystem services is closely
related to the notion of resilience in ecosys-
tem service provision. The notion of resil-
ience is nuanced and complex, but for the
sake of concreteness we adopt a definition
similar to one used in Gren (2010)—namely,
the reliability of ecosystem service provisions
under exogenous shocks, specifically weather
risk.? In this article, we explore trade-offs for
the expected provision level and for different
levels of resilience (specified as simulated prob-
ability of attaining the desired provision level)
for the case of a single nonmarket ecosystem
service and then expand the notion of trade-offs
to multiple dimensions of aquatic ecosystem
services where we focus on the joint probability
of meeting desired ecological targets.* To do so,
we adopt a multi-objective optimization ap-
proach with the objectives specified as means
and standard deviations of desired ecosystem
outputs. For this application, we focus on a
heavy agricultural watershed in Iowa and use
nutrient loads as proxies for aquatic ecosystem
services. This approach is relevant to situations
where the connection between human actions
on the landscape and ecosystem services is char-
acterized by a complex relationship involving
nonlinearities, nonconvexities, and nonsepar-
abilities (for example, conservation network de-
sign as in Parkhurst and Shogren 2007).

Resilience in the Provision of Ecosystem
Services

The concept of resilience has been used exten-
sively by many disciplines, each approaching
the concept from somewhat different perspec-
tives and providing different definitions. We
refer the reader to Longstaff, Koslowski, and
Geoghegan’s (2013) typology and translation

3 Social preference for reliability of goal attainment is reflected
in the required “margin of safety” in the Total Maximum Daily
Load regulations, requiring either to explicitly reduce allowable
pollutant loads in a watershed based on modeled uncertainty or to
employ conservative modeling assumptions (http:/water.epa.gov/
lawsregs/lawsguidance/cwa/tmdl/TMDL-ch3.cfm).

4 However, as Heal and Small (2002) point out, “We are pow-
erfully ignorant about the technology that produces ecosystem
services.” While true, ignorance should not be a reason not to ex-
plore the implications of existing levels of understanding of some
dimensions of ecosystem services production process embodied,
in our case, in the ecohydrologic model. See Kling (2011) for a
call to action while acknowledging the deep uncertainties in-
volved and importance of learning and adaptive management.
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of the concept among different disciplines.
Intuitively, the notion of resilience deals with
the ability of a system to perform desired func-
tions under external shocks. Within the above-
mentioned typology, we adopt the definition
referred to as Type I resilience: the capacity of
a system “to rebound and recover.” Simply
put, we spatially optimize the selection of agri-
cultural conservation practices that optimize
both the expected performance of the conser-
vation actions and their variance in providing
ecosystem services (Shortle and Horan 2013
suggest a similar approach).

Conceptual Model and Background

Next, we sketch a simple model to aid in the
conceptual framing of our work that links the
concept of resilience as defined above to a
metric of joint ecological-economic outputs.
We define a joint ecological-economic produc-
tion function as S(x;¢) : R™ — R¥, where x is
an m x 1 vector of controllable economic in-
puts into the production of ecosystem services
(e.g., land, machinery, labor, fertilizer input,
conservation practices) over the relevant spa-
tial and temporal scale, which produces a
k x 1 vector of monetized benefits/costs and
nonmonetized ecosystem services, and ¢ repre-
sents exogenous factors (e.g., rainfall, solar ra-
diation, commodity prices or government
policy), which are treated as random. One of
the components of the output vector serves to
monetize the choices made with respect to hu-
man actions, x. Depending on the availability
of data and models, the monetizing component
can range from a full accounting of net social
benefits measuring welfare impacts of mar-
keted ecosystem services and nonmarket val-
ues of some nonmarket ecosystem services,
to simply measuring estimated engineering
costs associated with x. Within this joint
ecological-economic metric, decision makers
specify a set of desirable performance targets,
S. Appropriately signing outputs so that they
are all desirable, the problem of resilience
can be written as max, P(S(x;¢) > S); that is,
resilient actions are those that maximize the
probability of meeting a desired level of mon-
etized and nonmonetized ecosystem services.

This approach is a version of Roy’s (1952)
safety-first criterion.” Safety-first approaches

3 More broadly, this kind of formulation can be described as a
P-model of Chance-Constrained Programming (CCP) of Charnes
and Cooper (1959), and CCP can be .described [as a| class of
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have found numerous applications in agricul-
tural and environmental economics.® As
highlighted by Shortle and Horan (2013),
Total Maximum Daily Load incorporates a
safety-first approach through the requirement
of a “margin of safety” constraint on the al-
lowable watershed pollution loads. Another
example is that the government of Canada
considered a climate mitigation policy requir-
ing 95% certainty in agricultural carbon se-
questration credits (Rabotyagov 2010). These
examples emphasize the direct policy relevance
of the resilience framework and the findings
from this work.

In many applications, the trade-offs associ-
ated with resilience can be appropriately for-
mulated by minimizing the (nonstochastic)
cost of achieving a single stochastic ecosys-
tem service objective with a given probabil-
ity. The resilience objective for a single
ecosystem service, S;, is typically written as a
constraint, P(S;(x;¢) > S;) > «, where o is
the level of resilience (or reliability) of the
system and S; is the objective target set for
the ecosystem service. Rewriting the proba-
bilistic constraint in a deterministic form can
be accomplished when the distribution of
the random term is known. In this case, a de-
terministic constraint involving the controlled
mean and variance of ecosystem service pro-
vision can be written as E.(Si(x))+
F'(1 - o)Var(Si(x))"> > S;,  where F!
(1 — o) defines the critical value of the stan-
dardized distribution of S;. For high desired
levels of confidence o (so that F ! 81— o) < 0),
the term (F,'(1 — o)Var(Si(x))") has the
standard interpretation of a “margin of safety”
or of an “uncertainty discount.” Trade-offs be-
tween costs and the resilience of providing
nonmonetized ecosystem services can be quan-
tified by the higher cost of resilience. Previous
work has found resilience to be costly, with the
exact level depending on the particular situa-
tion, varying from single-digit percentage uncer-
tainty discounts for soil carbon sequestration
(Rabotyagov 2010) to almost doubling the costs
of pollution reduction when resilience increases
from 50% to 95% (Bystrom, Andersson, and
Gren 2000; Elofsson 2003), to a seven-fold

anticipative (nonadaptive) stochastic programming approaches
(Poojari and Varghese 2008).

© Of many past efforts, examples include Paris (1979), Beavis
and Walker (1983), Lichtenberg and Zilberman (1988),
McSweeny and Shortle (1990), Bigman (1996), Willis and
Whittlesey (1998), Horan and Shortle (2011), Elofsson (2003),
Gren (2008), Kampas and White (2003), and Rabotyagov (2010).
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increase in costs of controlling N runoff
(McSweeny and Shortle 1990).”

The case of no uncertainty in the opportu-
nity costs of ecosystem services provision al-
lows for a particularly convenient inversion
of the probability statement to describe resil-
ient levels of provision. If x is costly, the con-
straint will be binding and E.(S;(x*))+
F'(1 — o)Var(Si(x*))"° = S; represents the
a-quantile of the controlled provision distribu-
tion (also sometimes referred to as a claimable
amount, as in Kurkalova 2005) and x* denotes
choices leading to resilient provision. When
multiple objectives are brought under the joint
probabilistic constraint (P(S;(x;¢) > S; , Sk
(x;€) > S) > o), such an inversion from joint
probabilities to unique quantiles is no longer
possible, except for the case of statistically in-
dependent objectives, where the jointly o”-re-
silient set is constructed of individual
(marginal) a-resilient provision levels. Instead,
combinations of individual provision levels
that jointly produce the desired a-level resil-
ience will be required.® In short, a simple in-
terpretation of results as producing uniquely
resilient levels for each ecosystem service tar-
get no longer applies.

Fortunately, if we ask “what is the joint re-
silience associated with a particular solution x
and specified objectives S?,” the answer, ex-
pressed as a joint probability, is easy to
understand. Namely, the probability is
P(x) = [I[S(x;¢) > S]dF(¢). In some cases,
when a single stochastic objective is encoun-
tered and a particular distribution for the ran-
dom factor (e.g., normal) is assumed, the
probability can be retrieved from existing ta-
bles. In cases where the ecological production
process is linear and separable (S(x;¢) =
s(¢)'x), analytical expressions can be con-
structed (e.g., Kampas and White 2003).
However, even for a single dimension of eco-
system service output, where the production
process takes place over K locations and
where multiple actions (J) are available in x,
construction of (conditional on x) variance to

7 An obvious source of affecting costs of resilience lies with
the choice of the critical value F.'(1 — ). Under uncertainty
about the form of the controlled distribution, one can purchase
resilience with respect to distributional uncertainty by relying on
the Chebyschev Inequality (e.g., Gren 2010). This, however, ap-
pears unnecessarily conservative for most practical applications.

8 This is akin to confidence ellipses encountered in joint signif-
icance testing of regression parameters. For the introduction to
the issues encountered in joint chance constraints, see Bawa
(1973), Prekopa (1970), and Willis and Whittlesey (1998) for an
applied agricultural economics example or Hong, Yang, and
Zhang (2011) for the modern operations research perspective.
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arrive at the standardized ecosystem output
involves estimating % terms of the
variance-covariance matrix, which would ac-
count for all the spatial and action-related co-
variances. This is a common problem that
arises in risk management, and analytical
techniques, such as copula estimation, exist
to aid researchers and decision makers
(Cherubini, Luciano, and Vecchiato 2004).

Gren (2010) considered several abatement
actions and the implied abatement correla-
tions across actions in estimating the resil-
ience value of wetlands for nutrient
reduction; however, her analysis did not in-
corporate spatial correlations, and Kampas
and White (2003) have shown that ignoring
correlations introduces larger bias in proba-
bilistic constraints than incorrect distribution
specification. Rabotyagov (2010) considered
two agricultural conservation actions as well
as spatial correlation for soil carbon seques-
tration. However, the introduction of multi-
ple dimensions, as well as the distributional
assumptions needed to make probability
statements, further complicates the issue. For
instance, Kampas and Adamidis (2005)
pointed out that under the log-normality as-
sumption of pollution reduction from a single
action, the sum of reductions does not follow
the log-normal distribution as Gren,
Destouni, and Tempone (2002) assumed.

Natural science knowledge suggests that
important dimensions of S(x;¢) are nonlinear
and nonseparable (examples provided in
Carpenter et al. 2015), and thus obtaining an-
alytical expressions for the overall resilience
value is more difficult. One issue that arises
in this context is computational cost associ-
ated with evaluating S(x;¢) many times. For
example, we could build the objective of re-
silience directly into the multi-objective
trade-off analysis (see Rabotyagov, Jha, and
Campbell 2010), but instead we formulate the
objectives in terms of means and standard
deviations.

Trade-off Development

We develop Pareto frontiers for cost, mean
of ecosystem services, and resilience objec-
tives. When the economic-ecological produc-
tion function can be explicitly written, exact
multi-objective optimization can generate the
trade-off frontier (see Polasky et al. 2008;
Toth and McDill 2009). When the S(x;e)
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function cannot be written in a compact math-
ematical form but is represented by a com-
puter simulation program, simulation-
optimization methods can be used. We follow
the latter approach here. Multi-objective evo-
lutionary algorithms are powerful optimization
heuristics capable of dealing with potential
nonconvexities in optimization and iteratively
using simulation model output to (approxi-
mately) develop multiple-objective Pareto-effi-
cient sets in a single optimization run.’

We use a model of joint economic-ecological
production process, where the human actions
considered are “working land” agricultural
conservation practices largely consistent with
the prevailing crop system and “land retire-
ment” by establishing perennial grass cover on
cropland. These actions represent economic in-
puts into the production of (proxies for) fresh-
water and coastal aquatic ecosystem services
associated with reducing ambient nitrogen (N)
and phosphorus (P) loads.

Scientific consensus exists on the fact that
human activity has altered both the nitrogen
and phosphorus cycles (Millenium Ecosystem
Assessment 2005, ch. 12), with some beneficial
(increased crop production) and some delete-
rious (eutrophication) effects on ecosystem
services. The exact targets for nutrient loads
and concentrations are an active area of re-
search and policymaking (Evans-White 2013;
Heiskary and Bouchard 2015; U.S. EPA
2015), but it is well understood that excess nu-
trient loads negatively impact many ecosystem
services from freshwater and coastal systems.
We take as a starting point that it is desirable
to reduce N and P and elucidate the trade-offs
involved in controlling the mean and standard
deviation of nutrient pollution.

Model Application

There are K decision-making units (“fields”) in
the watershed, each field being characterized

? Deb (2001) is the classic introduction to evolutionary algo-
rithms. Nicklow et al. (2009) and Maier et al. (2014) discussed
some recent applications focused on water resources, and
Kennedy et al. (2008) and Porto, Correia, and Beja (2014) pro-
vided terrestrial ecosystem management examples. Herman et al.
(2014) explored trade-off generation under deep uncertainty.
Recent examples for trade-off development using multi-
objective evolutionary algorithms in agriculturally dominated
ecosystems include Gramig et al. (2013), Bostian et al. (2015),
Ahmadi et al. (2013), Rabotyagov et al. (2014), and Chichakly.
Bowden, and Eppstein (2013), who incorporated measures of re-
silience to anticipated climate change.
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by a unique combination of physical character-
istics (soil, slope) and location in the watershed.
The ambient water quality is monitored both
in-stream and at the outlet of the watershed.
Let r;=ri(x, ) Vi=1,...,K be the "
field emissions given the actions taken at field
level, where x; represents the J x 1 vector of
actions implemented at each field and ¢ repre-
sents the stochastic weather factor. The set of
actions consists of baseline activity, a set of
working land conservation practices, and land
retirement.

Our ecological production function is a wa-
ter quality production function, W(r(x,§)),
that is the result of the complex spatial inter-
actions between the edge-of-field emissions
leaving the fields, which are represented by
an ecohydrologic simulation model.'® Given
the stochastic nature of weather, we are inter-
ested in finding the least-cost spatial combi-
nations, x, that reduce expected values of
nutrient pollution as well as their standard
deviations. Using optimization results, we
construct a measure of resilience, defined as
the probability of achieving a particular tar-
get, and analyze the trade-off between costs
and different levels of resilience. We start by
considering the case of a single nutrient pol-
lutant (a proxy for diminished aquatic ecosys-
tem services upstream and downstream) and
then move to the case of two pollutants.

Single Pollutant Case

We begin by solving the multi-objective prob-
lem that simultaneously minimizes

(1) Miny [C(x), E7[N(x)], Varr[N(X)]O‘S]

where x represents a KJ x 1 vector repre-
senting a particular placement of conserva-
tion practices, W(r(x,&)) = N(x) represents
the simulated, over period of length T,

0" As Lichtenberg (2002) explains, “There is not a simple
monotonic relationship between emissions at the level of an indi-
vidual field and impacts on environmental quality at the ambient
scale with which policy is actually concerned. Fate and transport
are typically non-linear and depend on space and time in com-
plex ways, making extrapolation of field-level emissions to ambi-
ent pollutant concentrations quite complex.” We refer the reader
to Lichtenberg (2002) and Shortle and Horan (2013) for reviews
of these and other issues associated with nonpoint source pollu-
tion from agriculture, as well as to Rabotyagov et al. (2014) for
an attempt to simplify the “ecological production” process.
Uncertainty in the model structure itself is not considered in this
article, although we recognize this as likely important for both
better science and policy relevance (see Herman et al. 2014).
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vector of annual nitrogen loads, E7[N(x)] is
the mean nitrogen load over the historical
simulation period, Varr[N(x)]" is the stan-
dard deviation, and C(x) is the estimated
cost of that particular combination of con-
servation investments in the watershed.

The solution vector x* defines the Pareto-
efficient set (Py), where each element is rep-
resented by a unique combination of cost, ex-
pected nutrient load, and the standard
deviation of loads:

2)  Pr(x’) ={C(x"), Er[N|(x")],
Var[N(x)*3 x £ x°,
Pf(X) - Pf(X*)}.

That is, a pattern of conservation invest-
ments defines the Pareto-efficient frontier if
there is no other conservation action pattern
that is a Pareto improvement (>) in the cost-
mean-standard deviation space. The Pareto-
efficient frontier defines the set of optimal
trade-offs; for example, the lower envelope of
the set with respect to mean N and conserva-
tion action costs gives the equivalent of the to-
tal abatement cost curve for expected nutrient
pollution. It also offers valuable information
on the possible mean-variance trade-offs,
where, for a given cost, a trade-off between
expected ecosystem service performance and
its standard deviation could be seen. For the
single stochastic objective, it is straightforward to
“collapse” the three-dimensional Pareto frontier
into a set of “resilient trade-offs” between cost
and resilient provision of an ecosystem service.
Specifically, finding resilient solutions involves
solving a chance-constrained optimization
problem:

(3)  Miny C(x) s.t. Pr{Nt(x) < N}
LT

>aVt=1,..

where N is the target level of N loads, and o
the desired level of resilience measured as
the probability of achieving the target.

We use the Pareto frontier Py(x*) and em-
ploy two approaches to approximate solu-
tions to equation (3), approaches that we
label as “normal” and “nonparametric.”
Under both approaches, we transform equa-
tion (3) using its deterministic counterpart
as:

Amer. J. Agr. Econ.

(4)  Ming C(x) s.t. Er {N(x)}
+¢*Varr(N(x))*> < N

where ¢” is the critical value of the standard-
ized distribution of N(x).

The solution to the chance-constrained prob-
lem (3) must be a member of the Pareto fron-
tier in the cost-mean-standard deviation space:
X C x*. The converse is not true: a particular solu-
tion from a multi-objective optimization program
need not be optimal for a chance-constraint pro-
gram. The supplementary online appendix pro-
vides the demonstration of this point.

Under the normal approach, we assume
the standardized distribution of the pollution
load follows a normal distribution and use
¢* = ® (o), the standard normal critical
value that depends on « (1.64 for o = 0.95).
Under the normality assumption, we consider

— resilient pollution loads to be Er
?N(f{)} + @ (o) Varp(N(x))* and can focus
on the results in terms of trade-offs between
cost and resilient nitrogen loads.

Note the direct policy relevance of this ap-
proach. A watershed manager who wishes to
ensure that the target is met 75% of the time
rather than just 50% of the time can be in-
formed of the additional cost associated with
this higher level of resilience.

Nonparametric Approach

An alternative approach is to employ
nonparametric bootstrap methods (Efron
1979) and define the resilience levels based
on bootstrapped quantiles. Since our data (ni-
trogen loads simulated over a period of time)
is serially dependent, we employ the block
stationary bootstrap method (Politis and
Romano 1992, 1994). Observations are re-
sampled in blocks of random length, with the
length of the block being determined by a
geometric  distribution. The block re-
sampling preserves the lag dependence in the
original data. The bootstrapped data is sta-
tionary if the block length is determined us-
ing a geometric distribution. Additionally,
the block bootstrap works well under very
weak conditions on the dependency structure
of the original data.

For any efficient combination of conserva-
tion practices (x*) that is part of the Pareto
frontier Py(x*), we take the model-simulated
T x 1 vector of nitrogen values N(x*) to con-
struct a nonparametric distribution via a sta-
tionary bootstrapping approach using blocks
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of unequal length. To obtain trade-offs in-
volving « — resilient nitrogen loads, for each
bootstrap replicate series, we compute the
sample «-quantile and average the results
over many replications. The interpretation of
the bootstrapped o — resilient Pareto frontier
is similar to the previous one, each solution
representing a nondominated combination of
cost and o — resilient nitrogen loads that cor-
responds to a given level of resilience, o. The
magnitude of the differences between the
normal and nonparametric approaches is an
empirical question.

Multiple Pollutants: A Case of Nitrogen and
Phosphorus

We also develop trade-offs that involve the
means and the variances of multiple ecologi-
cal objectives. In this case, we modify the
multi-objective minimization problem to in-
clude the means and standard deviations of N
and P:!!

(5) Miny [ C(x), Er[N(x)],
Varr[N(x)|"*, Er[P(x)], Varr[P(x)]™]

where x represents a particular placement of
conservation practices, N(x) and P(x) are the
vectors of nitrogen and phosphorus loads of
length T, E[.] is the expected water quality out-
come measured as a (historical) sample mean
of nitrogen and phosphorus, Varr[N(x)*> and
Varp[P(x)]™ are respective standard devia-
tions, and C(x)is the annual cost of the particu-
lar combination of conservation investments in
the watershed.

Similarly to the univariate case, the solu-
tion is represented by a Pareto set, P},
where each element represents a nondomi-
nant combination of cost, mean, and standard
deviation values for nitrogen and phosphorus
emissions associated with a spatial combina-
tion of conservation practices. As discussed
above, it is more intuitive to consider actual
trade-offs between mean and variance con-
trol or to characterize a particular solution in
terms of the probability (resilience value) of
meeting a specified target.

'L If the objective were to be specified as minimizing the
variance—for example, the sum, or a linear index of two
nutrients—the covariance term would enter into problem specifi-
cation. Alternatively, the resilience objective specified as a joint
probability could be simulated within the optimization loop (as
in Poojari and Varghese 2008). We leave those extensions to fu-
ture work.
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In order to characterize joint resilience im-
plied by the solutions in the Pareto-frontier,
we rely on the nonparametric bootstrap, now
using two dimensions. Resilience is defined as
the joint simulated probability of achieving
both N and P targets. Similarly to the univari-
ate stationary bootstrapping, we use the vec-
tors of simulated nitrogen and phosphorus
loads to generate bootstrap replicates using
blocks of unequal length. The stationary
bootstrapping procedure involves the simul-
taneous use of both vectors, thus preserving
the correlation between controlled loads of N
and P. That is, given a particular joint tar-
get (N, P), we can construct characteriza-
tion of the trade-off frontier in terms of cost,
mean nitrogen, mean phosphorus, and simu-
lated joint resilience of achieving the speci-
fied target. The resilience level is estimated
as the simulated probability, p(x;):

M
©6)px) = > {> 1(NX),

r=1

<N, P(x), < P)/T}/M

where T is the length of the model simula-
tion, x; is the particular pattern of conserva-
tion investments evaluated, and M is the
number of bootstrap replications.

To approximate the solution sets for the
multi-objective problems (1) and (5), we use
a simulation-optimization framework using
the Soil and Water Assessment Tool
(SWAT) as the ecohydrological simulation
model and a modification of the Strength
Pareto Evolutionary Algorithm 2 (SPEA2;
Zitzler, Laumans, and Thiele 2002) as the
multi-objective optimization heuristic, as de-
scribed by Rabotyagov, Jha, and Campbell
(2010). The simulation-optimization frame-
work simultaneously minimizes the cost, the
twenty-year means (7 =20), and standard
deviations of annual N for the single
pollutant case and for both N and P loads for
the two-pollutant case.'? The solutions are
sets of Pareto-nondominated watershed con-
figurations Py and PN'. To assess conver-
gence, we use a consolidation ratio proposed

12 The resulting relatively small sample size used to construct
the model-simulated mean and the standard deviation is one of
the limitations of the study and can introduce imprecision in re-
silience estimates. To the extent that mean and standard devia-
tion estimates are not biased, we try to improve precision by
bootstrapping optimized series.
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by Goel and Stander (2010) and used by
Rabotyagov et al. (2014).

SWAT is designed to run watershed simula-
tions based on a wide range of inputs: weather
data, soil characteristics, plant growth and
crop rotations, nutrient management, nutrient
transport and transformation, and land use
and management practices. This process
model can be used to estimate the changes in
nutrient emission in response to changes asso-
ciated with alternative conservation practices,
crop choices, and rotation alternatives. The
model is maintained by the U.S. Department
of Agriculture and has been used in a wide
range of applications (Arnold et al. 1998;
Arnold and Fohrer 2005; Gassman et al.
2007).

Study Area: Boone River Watershed

The Boone River watershed is a typical agri-
cultural watershed in central Iowa with more
than 90% of its area dedicated to corn and
soybean  production. The  watershed’s
tributaries offer critical habitat to the Topeka
shiner (Notropis topeka), a federally listed
endangered species, and to other fish and
mussel species. Additionally, the watershed
tributaries feed the Des Moines River, a ma-
jor water source for the biggest metropolitan
area in Iowa. The lower part of the watershed
is used for recreation activities.

Given the extent of the agricultural activi-
ties, high levels of agriculture-contributed ni-
trogen, phosphorus, and sediment loads
contribute to the water quality impairments.
A successful calibration for the current
Boone River watershed SWAT baseline was
obtained by using monthly streamflow and
nutrient data and incorporating earlier cali-
bration efforts (Gassman 2008).!* The set of
conservation practices selected for achieving
the nutrient reduction includes working land
practices: cover crop, no-till, the combination
of cover crops and no-till, and land retire-
ment. Typically, cover crops are grown dur-
ing late fall and early spring. In the Midwest,
where there are no markets for cover crops,
cover crops are promoted for their direct

13 The present SWAT simulations are being performed with
an updated SWAT version 2012 code (SWAT2012, Release 6150,
which contains corrected algorithms that more correctly simulate
movement of nitrate through subsurface tile lines, as well as nu-
merous other enhancements that were not present in the
SWAT2005 code).

Amer. J. Agr. Econ.

environmental benefits (recycling nutrients
and preventing nutrient leaching) and indi-
rect economic benefits (improving soil health
by preventing soil erosion). Cover crops are
effective in reducing both nitrogen and phos-
phorus losses. No-till is a type of tillage where
no more than 30% of the crop residue is re-
moved. No-till is effective in reducing erosion
and phosphorus runoff. Land retirement in-
volves taking land out of production and the
establishment of perennial grasses.

The cost estimates for conservation prac-
tices used in this study are drawn from sev-
eral sources: no-till at $6 per acre (Iowa State
Extension budgets), cover crops at $35 per
acre (Towa Nutrient Reduction Strategy), $41
per acre for the combination of no-till and
cover crops, and $254 per acre for the aver-
age cash rental rate for the watershed (Iowa
State Extension cash rental rates estimates)
as the cost of land retirement. The cost of
conservation practices is additional to the
cost of baseline activities, considered to be
zero in this application. One expects the ac-
tual farmers’ willingness to accept such con-
servation practices to vary throughout the
watershed (e.g., Lynne, Shonkwiler, and Rola
1988). Data and space limitations lead us to
leave the important issue of cost heterogene-
ity to future research (although, see Latacz-
Lohmann and Schilizzi 2005 and Rabotyagov
et al. 2014b for relevant ideas related to im-
plementing efficient conservation efforts).

Results and Discussion

The simulation model allows us to evaluate
counterfactual watershed scenarios in terms
of estimated costs of conservation practices
and their implications for mean and variance
of corresponding annual nutrient loads from
1993 to 2013. We estimate the Pareto-
efficient frontiers for a single pollutant (N)
and multiple pollutants (N and P). In the first
part of our analysis, we focus on the total
level of emissions (loads) by offering a short
analysis of the mean-variance trade-offs and
how these trade-offs relate to the choice of
the conservation actions. Next, we analyze
the trade-offs between achieving a pollution
target with a given resilience level and the es-
timated cost of conservation actions. The set
of resilience values () ranges from 50% to
95% in 5% increments, as well as 99%.
Nutrient pollution targets are chosen as a
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range of percent reductions from the histori-
cal baseline loads.

Single Pollutant Case: Nitrogen, Mean-
variance Trade-offs

The results of the multi-objective optimiza-
tion defined by equation (1) can be visually
depicted by a three-dimensional scatter plot
(Pr), where each point on the frontier repre-
sents the least-cost watershed configuration
that achieves a given expected value of N
loads and has the lowest standard deviation
(see figure A.2 in the supplementary online
appendix). Figure 1 depicts the extent of the
mean-variance trade-offs from the frontier.
Specifically, figure 1(a) shows a fairly linear
positive relationship between the mean and
the standard deviation of N loads, as standard
deviation increases with the mean.
Additionally, the analysis of the mean-
coefficient of variation (ratio of standard de-
viation to the mean) plot (see figure 1[b])
shows three patterns: a steep increasing trend
for the low range of N loads (below 3,000
tons) where the standard deviation increases
at a faster rate than the mean, followed by a
smoother declining pattern where the stan-
dard deviation increases at a slower rate than
the mean. For larger loads (above 4,500
tons), the ratio of standard deviation to mean
settles around 0.5. These patterns can be ex-
plained by the distribution of the conservation
practices selected by the algorithm (see the
supplementary online appendix, figure A.3).
Next, we quantify the cost to achieve a par-
ticular level of nitrogen loads under different
levels of resilience. More explicitly, for any
level of resilience, o, we construct resilient
Pareto frontiers, where each Pareto frontier
can be viewed as the total cost curve for
which the corresponding N loads are
achieved with probability o. As previously de-
scribed, we use two approaches (normal and
nonparametric) to construct the resilient
Pareto frontiers that correspond to different
resilience levels. The normal approach as-
sumes that the standard normal critical values
are used to weigh the standard deviations
while the nonparametric approach uses sta-
tionary bootstrap to simulate the quantiles.
Simulated nutrient load series pass stationar-
ity tests, and we use 10,000 bootstrap replica-
tions with a mean block length of 5. The new
Pareto frontiers transform the mean N values
of the original Pareto frontier|into w-resilient
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levels while keeping the costs and the water-
shed configurations unchanged.

Figure 2 depicts the a-resilient Pareto fron-
tiers for four levels of resilience: median (50),
75, 90, and 99, given the two approaches, as
well as the mean-cost trade-off. The horizontal
axis depicts the resilient loads, and the vertical
axis shows the total annual costs. Notice that
under the normal approach (left panel), the
corresponding levels of resilience for mean
and median are identical, while under the
nonparametric approach the two trade-off
frontiers are different, with the bootstrapped
mean trade-off frontier being entirely above
the median (right panel). Under both
approaches, the a-resilient Pareto frontiers
move further away from the left corner as
resilience levels increase. For any cost level
(consider a horizontal line), the resilient
level of N loads increases as we move from
one frontier to another. This shows us how
much resilience can be achieved under a
given budget. Likewise, for any level of resil-
ient N loads, the cost increases as we move
from one frontier to another. The vertical
distance between frontiers represents how
much it would cost to make the same level
of N load more resilient.

Next, we analyze the trade-off in achieving
different pollution targets at different resil-
ience levels. One way to analyze these trade-
offs is, for any given target, to construct cost-
resilient curves corresponding to an o-resil-
ient N target expressed as a percentage
reduction from the baseline. As expected,
more stringent targets (higher percentage re-
ductions, lower loads) cost more, and the
costs of achieving a given target increases with
the resilience level. For less stringent targets,
the costs-resilience curves are convex, with
nonconvexity patterns for more stringent tar-
gets. For example, when the target is set to a
70% reduction, the cost is flat once a high
level of resilience (80) is achieved. More
details, including a visual depiction of these
curves, can be found in the supplementary
online appendix (figure A.5).

Resilience: Marginal Cost Curves

Another way to analyze the resilience-cost
trade-off is to answer the question of how
much it would cost to achieve an additional
level of resilience. We focus our analysis on
three levels of reductions: low (20%), average
(45%), and high (70%). For each of the three
targets, figure 3 summarizes the cost curves
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Figure 1. (a) Mean-variance trade-offs; (b) mean-coefficient of variation
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Figure 2. a Resilient Pareto frontiers (left: normal approach, right: nonparametric approach)

for securing the targets at an additional resil-
ience level under the two approaches. These
curves can be interpreted as the marginal cost
of resilience. Although the marginal cost
curves have a similar shape, their magnitudes
differ across the two approaches. The mar-
ginal cost curve when the target is low (20%
reduction) is almost flat for resilience levels
lower than 80. However, for higher resilience,
the marginal costs display a sharp increase,
with the increase being sharper under normal
approach. The marginal cost curve for the in-

lower resilience, flat for moderate resilience,
and increasing for higher resilience levels.
However, the patterns are different under the
nonparametric approach (see figure 3, right
panel): relatively flat for lower levels, increas-
ing for moderate levels, and decreasing and
flat for higher levels of resilience. The mar-
ginal costs for the most stringent target are in-
creasing for lower levels, decreasing for
moderate levels, and flat for higher resilience
levels under both distributional approaches.
The diversity of patterns across targets and re-
silience levels can be explained by the distri-
bution of the conservation practices (these are
provided in table A.1 of the supplementary on
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Resilience-Costs Trade-offs:Normal Approach
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Figure 3. Marginal costs of additional resilience

line appendix). The costs of achieving resilient
loads corresponding to 45% reductions range
from 13 million to 87 million over the consid-
ered resilience levels. Similar to McSweeny
and Shortle (1990), we find that to control a
single-year N load with 99% resilience is al-
most seven times costlier than controlling N
with median resilience.

Resilient N Loads for Different Cost (Budget)
Levels

The o-resilient Pareto frontiers can also pro-
vide insight into the different load levels that
can be secured under different levels of resil-
ience when we impose a limit on total costs
(iso-cost curves). Figure 4 can be used to see
how much resilience can be obtained under a
given budget. Next, we present the results for
four cost (budget) levels: 10 million, 20 mil-
lion, 50 million, and 100 million. For each
budget level, we construct iso-cost curves
showing the trade-offs between resilience and
different levels of attainable loads.

Figure 4 shows that the iso-cost curves are
increasing (with curves developed under the
normal approach being convex), showing that
when keeping the cost (budget) constant,
higher levels of required resilience translate
to higher levels of loads, or, alternatively,
lower load levels have lower resilience levels.
The empirical findings also show that the size
of these trade-offs decreases as the total costs
(budget levels) increase as the iso-cost curves
corresponding to lower budgets tend to have
steeper slopes (more evident in the nonpara-
metric approach). For any of the chosen
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Resilience-Costs Trade-offs:Normal Approach
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for different resilient N targets

budget and any resilience levels, smaller
loads (more reductions) can be claimed un-
der the nonparametric approach (see figure 4,
right vs. left panel), suggesting that the nor-
mal approach is more conservative in this
case.

Multiple Targets: Nitrogen And Phosphorus

Next, we present the simulation results for
the case when two pollutants (N and P) are
jointly targeted. We approximate the Pareto
frontier for five objectives: cost and means
and standard deviations of N and P. The
Pareto frontier we obtain is valuable in that it
can show the nature of trade-offs along dif-
ferent values of N and P, as well as corre-
sponding variability and cost.

Visualizing across five dimensions is chal-
lenging but can be aided by radar (spider)
plots. Specific solutions of interest (a few at a
time) can be analyzed as well. The top row of
figure 5 plots a few solutions to demonstrate
relevant trade-offs and synergies of particular
interest (e.g., mean-standard deviation com-
parisons in the left column of figure 5 and
mean N and mean P comparisons in the right
column). The plots show fairly strong nega-
tive correlation (trade-offs) between values
of cost and means and standard deviations of
nutrient loads, with generally positive corre-
lations among nutrient means and standard
deviations. When we plot all efficient solu-
tions (bottom row of figure 5), we lose the
ability to distinguish individual solutions but
gain some visual insight into the nature of the
overall pattern of trade-offs and synergies.
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Iso-Cost Curves: Normal Approach
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Iso-Cost Curves: Non parametric Approach
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Figure 4. Resilience: iso-cost curves (left: normal approach, right: nonparametric approach)

Consider the bottom-left panel of figure 5,
and the mean N, mean P, and cost axes. The
nonconvex shape of the plot between those
axes says that there are no solutions in the
Pareto frontier that simultaneously have high
cost and high mean N and P loads (compen-
sating for those with smaller values on other
axes). This suggests a strong trade-off existing
between mean nutrient loads and cost. A con-
vex shape with respect to other axes does not
mean that trade-offs do not exist among the
remaining pairs of objectives but that there
exist efficient solutions that exhibit synergies
(comovement) along those dimensions. For
example (figure 6), trade-offs between N and
P control exist, but synergies are also present
(pairwise comparison of mean N and P on
the bottom-right panel of figure 5). A pres-
ence of at least some synergies is also appar-
ent by considering pairwise trade-offs
between means and standard deviations (con-
sistent with the limited nature of mean-
variance trade-off for N explored in figure
1[a]), whereas, as can be seen from the nature
of the trade-offs between costs and standard
deviations (shown on the right panel of figure
5 for the case of standard deviation of P; N
results are similar), there are no synergies be-
tween cost and risk and we see strong trade-
offs consistent with the notion that resilience
is always costly (the lower the standard devia-
tions, the higher the costs). However, we do
not see strong trade-offs between means or
standard deviations of nutrient reduction
objectives.

Next, we make the connection to resil-
ience. Since we are /interested in the joint

constraint Pr{N((x) < N, P/(x) < P} >
oVt =1,..., T, we cannot be assured of joint
resilience optimality of solutions obtained by
the multi-objective program as the algorithm
does not directly simulate the joint probabil-
ity. However, we can still provide an ex post
assessment of the solutions in terms of joint
resilience. To do so, we again rely on the (now
joint) nonparametric bootstrap approach, us-
ing 10,000 replicates and computing the simu-
lated resilience using equation (6).

A three-dimensional illustration of these
trade-offs when the targets are set equal to
45% reductions for both N and P (equation
9) is presented in the supplementary material
(figure A.6). Each element on this frontier (a
three-dimensional projection of the five-di-
mensional Pareto frontier) is assessed for a
resilience (probability) level of achieving this
joint target. Figure 6 shows the results of the
frontier assessment for joint resilience.
Consistent with our expectation, not all mem-
bers of the Pareto frontier are efficient with
respect to cost and resilience when a specific
nutrient objective is specified. But, as the
lower envelope of data in figure 6 shows, the
estimated frontier does show that higher re-
silience generally comes at a higher cost.
Figure 7 depicts the marginal costs of achiev-
ing additional levels of resilience for the three
specified targets, while table A.2 (see the
supplementary online appendix) describes in
detail the total and marginal costs, as well as
the distribution of conservation practices.
The overall pattern of joint resilience assess-
ment of the five-dimensional frontier for a
range of targets may suggest that, for the
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Figure 5. Pareto-optimal frontier: cost, means (N, P), and standard deviation (N and P)

Note: The values of the axes increase from inwards to outwards.

system under study and given the conserva-
tion options, attaining joint resilience of 80%
presents a particularly costly hurdle. Also, we
see, for example, that the solution estimated
to have 70% resilience has a higher cost than
a solution estimated to have 75% resilience
(see figure 6). The negative marginal costs
are not economically sensible, and they likely
occur due to some optimization inefficiencies
(note that the estimated five-dimensional
frontier aims at assessing trade-offs across a
wide range of nutrient reductions, not just the
45% selected for analysis here).

Overall, the costs of achieving the joint
target are higher than in the case of a single
pollutant and range from 22 million to 107
million. This is to be expected as a joint proba-
bility is going to be smaller than a marginal
one. The distribution of the conservation prac-
tices also changes, with more land retirement
being used more extensively at any given
resilience level. The spatial placement of the
i i i ithy these
entary

Conclusions and Caveats

Many ecosystem services are rivals, and im-
portant trade-offs exist in their production
processes. Understanding the nature of these
trade-offs requires: (a) defining a quantifiable
measure of the underlying ecosystem produc-
tion process and of the economic inputs that
go into these productions functions; and (b)
exploring alternative resource allocation de-
cisions to identify, at least approximately,
Pareto-efficient ways of producing different
ecosystem services. Uncertainty in the provi-
sion of a particular ecosystem service adds
another dimension to the nature of these
trade-offs, where different ecosystem services
differ both in terms of the expected outcomes
and in terms of risks. In this work, we draw
on the literature in resilience to monetize the
size of these trade-offs.

We study the trade-offs for aquatic ecosys-
tem services in a landscape dominated by ag-
ricultural activity. Particularly, we focus on
controlling the loads of agricultural nutrients
(N and P) as a means to improve the
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Cost of Joint Resilience
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Figure 6. Joint resilience assessment of the solutions in the Pareto frontier (given a 45% re-

duction target in N and P)

upstream and downstream water quality.
Economic inputs into water quality produc-
tion are a set of conservation practices that
can be implemented on agricultural land-
scapes for controlling the loads of nutrients,
while the ecological production function is an
ecohydrologic simulation model relating hu-
man actions to changes in nutrient loads. By
integrating a heuristic global optimization
with an ecohydrologic model, we meet the
conditions of having a science-based repre-
sentation of the water quality production
function (W(r(x,&;)) and its dependence on
the exogenous stochastic weather factors, and
we have the ability to produce an approxi-
mate Pareto frontier that accounts for multi-
ple trade-off dimensions.

We quantify the trade-offs involved in
achieving different levels of nutrient loads
with different levels of resilience, where resil-
ience is defined as the probability of attaining
the desired level of nutrient loads. We spa-
tially optimize the selection of least-cost pat-
terns of agricultural conservation practices,
or both the expected performance of the con-
servation actions and its variance. We ana-
lyze the trade-offs for a single nutrient
(ecosystem service) and then expand our
analysis to include multiple nutrients (multi-
ple ecosystem services).

We apply our modeling framework to the
Boone River watershed in Iowa. The empiri-
cal results are consistent with previous stud-
ies: securing nutrient loads with higher levels
of resilience is costly. However, the marginal
cost of resilience exhibits fairly complex

behavior, varying with both the desired levels
of nutrient control and the level of resilience
required. For the case of N, we found that fo-
cusing on larger nutrient reductions allows
the achievement of resilience at a smaller ad-
ditional cost than when seeking only modest
nutrient reductions. In our application, this is
due to the ability of perennial grassland to
buffer against exogenous shocks and to dras-
tically reduce variability in nutrient loads (as
shown before, for example, in Rabotyagov,
Jha, and Campbell 2010). Furthermore, the
main trade-off dimension is between cost of
conservation investments and ecosystem ser-
vice objectives, as opposed to pronounced
mean-variance trade-offs or strong trade-offs
between the two nutrient objectives. While
some meaningful trade-offs exist between nu-
trient objectives, our findings highlight the
presence of relative synergies in agricultural
conservation investments aimed at nutrient
reductions. We offer a visual depiction of
trade-offs and synergies in multiple policy ob-
jectives. However, while relative synergies
exist, controlling risk of nutrient loads has
high opportunity costs and resilience comes
at a significant premium.'#

4 We note recent research by Carpenter et al. (2015), who
provided examples showing that, in nonlinear systems, reducing
high-frequency variance can lead to an increase in low-frequency
variance, thereby undermining the resilience objective. We con-
structed spectrum plots of controlled variance of nutrients, and
we see a decrease in variance at all spectra, as the conservation
investment cost increases.
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Figure 7. Marginal costs of joint resilience

The policy relevance of these findings is di-
rect. If the goal of policymakers is to meet an
ecosystem objective 50% of the time, this can
generally be achieved at a much lower cost
than if the goal is to meet that same objective
80% or 90% of the time. Importantly, the
methods implemented here can quantify both
the magnitude of these additional costs and
the set of conservation practices needed to
achieve increased resilience at the least cost.
By constructing the entire marginal cost
curve of resilience for a single or multiple ob-
jectives, policymakers can see how much it
will cost to achieve different levels of resil-
ience and take this directly into account when
setting targets. While few disagree that addi-
tional resilience in a system is desirable, the
costs of achieving higher levels of resilience
are relevant to the discussion. The methods
employed here were applied to a water qual-
ity case, but they have broad relevance to sin-
gle- or multi-objective ecosystem policies,
including habitat preservation, design of con-
servation corridors, flood protection, and a
range of biodiversity concerns.

In considering particularly the findings for
the Boone River watershed, it is important to
acknowledge that our optimization algorithm
was not exactly tailored to the optimal joint
resilience question, but instead focused on
providing an overall picture of feasible trade-
offs. Limitations associated with uncertainty
in model structure, the simplicity of economic
cost representation, and the level of spatial
resolution of the ecohydrologic model pre-
sent ample opportunities for future research.

~ 20+ 30 - 45

However, these results demonstrate the util-
ity of an approach that integrates scientific
understanding of complex systems with the
practical need to see how production of
nonmarket ecosystem services can be accom-
plished at the lowest possible sacrifice of eco-
nomic inputs.

Supplementary Material

Supplementary material is available at http://
oxfordjournals.org/our_journals/ajae/online.

References

Ahmadi, M., M. Arabi, D.L. Hoag, and B.A.
Engel. 2013. A Mixed Discrete-
Continuous ~ Variable = Multi-objective
Genetic ~ Algorithm  for  Targeted
Implementation of Nonpoint Source
Pollution  Control  Practices. ~ Water
Resources Research 49 (12): 8344-56.

Ando, A.W., and M.L. Mallory. 2012.
Optimal Portfolio Design to Reduce
Climate-related Conservation
Uncertainty in the Prairie Pothole
Region. Proceedings of the National
Academy of Sciences 109 (17): 6484-89.

Arnold, J.G., and N. Fohrer. 2005. SWAT
2000: Current Capabilities and Research
Opportunities in Applied Watershed
Modelling. Hydrological Processes 19
(3): 563-72.


Deleted Text: the 
Deleted Text: ly
Deleted Text: -
https://ajae.oxfordjournals.org/lookup/suppl/doi:10.1093/ajae/aaw068/-/DC1
http://oxfordjournals.org/our_journals/ajae/online
http://oxfordjournals.org/our_journals/ajae/online

1310  October 2016

Arnold, J.G., R. Srinivasan, R.S. Muttiah,
and J.R. Williams. 1998. Large Area
Hydrologic Modeling and Assessment
Part I: Model Development. Journal of
the American Water Resources
Association 34 (1): 73-89.

Barbier, E.B., E.W. Koch, B.R. Silliman, S.D.
Hacker, E. Wolanski, J. Primavera, E.F.
Granek, et al. 2008. Coastal Ecosystem-
Based Management with Nonlinear
Ecological Functions and Values. Science
319 (5,861): 321-23.

Barbier, Edward B. 2015. Valuing the Storm
Protection Service of Estuarine and
Coastal Ecosystems. Ecosystem Services
11: 32-38.

Bateman, 1., A.R. Harwood, G.M. Mace,
R.T. Watson, D.J. Abson, B. Andrews,
A. Binner, et al. 2013. Bringing
Ecosystem Services into Economic
Decision-making: Land Use in the
United Kingdom. Science 341 (6,141):
45-50.

Bawa, V.S. 1973. On Chance Constrained
Programming Problems with Joint
Constraints. Management Science 19
(11): 1326-31.

Beavis, B., and M. Walker. 1983. Achieving
Environmental Standards with Stochastic
Discharges. Journal of Environmental
Economics and Management 10 (2):
103-11.

Bigman, D. 1996. Safety-first Criteria and
their Measures of Risk. American
Journal of Agricultural Economics 78 (1):
225-35.

Bostian, M., G. Whittaker, B. Barnhart, R.
Fare, and S. Grosskopf. 2015. Valuing
Water Quality Tradeoffs at Different
Spatial Scales: An Integrated
Approach using Bilevel Optimization.
Water Resources and Economics 11:
1-12.

Boyd, J., and S. Banzhaf. 2007. What are
Ecosystem Services? The Need for
Standardized Environmental Accounting
Units. Ecological Economics 63 (2-3):
616-26.

Bystrom, O., H. Andersson, and M. Gren.
2000. Economic Criteria for using
Wetlands as Nitrogen Sinks under
Uncertainty. Ecological Economics 35
(1): 35-45.

Carpenter, S.R., W.A. Brock, C. Folke, E.H.
van Nes, and M. Scheffer. 2015. Allowing
Variance May Enlarge the Safe
Operating . Space  for|  Exploited

Amer. J. Agr. Econ.

Ecosystems. Proceedings of the National
Academy of Sciences (11): 800-4.
Charnes, A., and W.W. Cooper. 1959.
Chance-Constrained Programming.
Management Science 6 (1): 73-79.
Cherubini, U., E. Luciano, and W. Vecchiato.
2004. Copula Methods in Finance.
Hoboken, NJ: John Wiley & Sons.
Chichakly, K.J., W.B. Bowden, and M.J.
Eppstein. 2013. Minimization of Cost,

Sediment Load, and Sensitivity to
Climate Change in a Watershed
Management Application.
Environmental Modelling and Software
(50): 158-68.

Deb, K. 2001. Multi-Objective Optimization
Using Evolutionary Algorithms, Volume
16. Hoboken, NJ: John Wiley & Sons.

Efron, B. 1979. Bootstrap Methods: Another
Look at the Jackknife. The Annals of
Statistics 1-26.

Elofsson, K. 2003. Cost-Effective Reductions
of Stochastic Agricultural Loads to the
Baltic Sea. Ecological Economics 47 (1):
13-31.

Evans-White, M.A., B.E. Haggard, and J.T.
Scott. 2013. A Review of Stream
Nutrient Criteria Development in the
United States. Journal of Environmental
Quality 42 (4): 1002-14.

Gassman, P.W. 2008.
Assessment of the Boone River
Watershed: Baseline Calibration/
Validation Results and Issues, and
Future Research Needs. Ph.D.
Dissertation, Iowa State University,
Ames, lowa. Available at: http://lib.dr.ias
tate.edu/rtd/15629/. Accessed December
2015.

Gassman, P.W., M.R. Reyes, C.H. Green,
and J.G. Arnold. 2007. The Soil and
Water Assessment Tool: Historical
Development, Applications, and Future
Research Directions. Transactions of the
ASABE 50 (4): 1211-50.

Goel, T., and N. Stander. 2010. A Non-
Dominance-Based  Online  Stopping
Criterion for Multi-Objective
Evolutionary Algorithms. International
Journal  for Numerical Methods in
Engineering 84 (6): 661-84.

Gramig, B.M., C.J. Reeling, R. Cibin, and L
Chaubey. 2013. Environmental and
Economic Trade-offs in a Watershed
when Using Corn Stover for Bioenergy.
Environmental Science & Technology 47
(4): 1784-91.

A Simulation


http://lib.dr.iastate.edu/rtd/15629/
http://lib.dr.iastate.edu/rtd/15629/

Rabotyagov, Valcu-Lisman, and Kling

Gren, M. 2008. Adaptation and Mitigation
Strategies for Controlling Stochastic
Water Pollution: An Application to the
Baltic Sea. Ecological Economics 66 (2):
337-47.

2010. Resilience  Value of
Constructed Coastal Wetlands for
Combating Eutrophication. Ocean &

Coastal Management 53 (7): 358-65.
Gren, M., G. Destouni, and R. Tempone.

2002. Cost Effective Policies for
Alternative Distributions of Stochastic
Water Pollution. Journal of
Environmental ~Management 66 (2):
145-57.

Heal, G., G.C. Daily, P.R. Ehrlich, J.

Salzman, C. Boggs, J. Hellrnan, and T.
Ricketts. 2001. Protecting Natural
Capital through Ecosystem Service
Districts. Stanford Environmental Law
Journal 20: 333.

Heal, G.M., and A.A. Small. 2002.
Agriculture and Ecosystem Services.
Handbook of Agricultural Economics
(2): 1341.

Heiskary, S.A., and R.W. Bouchard, Jr. 2015.
Development of Eutrophication Criteria
for Minnesota Streams and Rivers using
Multiple Lines of Evidence. Freshwater
Science 34 (2).

Herman, J.D., H.B. Zeff, P.M. Reed, and
G.W.  Characklis. 2014.  Beyond
Optimality: Multistakeholder Robustness
Tradeoffs for Regional Water Portfolio
Planning under Deep Uncertainty. Water
Resources Research 50 (10): 7692-713.

Hong, L.J., Y. Yang, and L. Zhang. 2011.
Sequential Convex Approximations to
Joint Chance Constrained Programs: A
Monte Carlo Approach. Operations
Research 59 (3): 617-30.

Horan, R.D., and J.S. Shortle. 2011.
Economic and Ecological Rules for
Water Quality Trading. Journal of the
American Water Resources Association
47 (1): 59-69.

Kampas, A., and B. White. 2003.
Probabilistic Programming for Nitrate
Pollution Control: Comparing Different
Probabilistic Constraint Approximations.
FEuropean  Journal of  Operational
Research 147 (1): 217-28.

Kampas, A., and K. Adamidis. 2005.
Discussion of the paper ‘Cost Effective
Policies for Alternative Distributions of
Stochastic Water Pollution’ by Gren,
Destouni - and | Tempone. Journal of

Resilient Provision of Water Quality from Agriculture 1311
Environmental Management 74 (4):
383-88.

Karp, D.S., C.D. Mendenhall, E. Callaway,
L.O. Frishkoff, P.M. Kareiva, P.R.
Ehrlich, and G.C. Daily. 2015.
Confronting and Resolving Competing
Values behind Conservation Objectives.
Proceedings of the National Academy of
Sciences 112 (35): 11132-37.

Kennedy, M.C., E.D Ford, P. Singleton, M.
Finney, and J.K. Agee. 2008. Informed
Multi-Objective  Decision-Making  in
Environmental = Management  using
Pareto Optimality. Journal of Applied
Ecology 45 (1): 181-92.

Kling, C.L. 2011. Economic Incentives to
Improve Water Quality in Agricultural
Landscapes: Some New Variations on
Old Ideas. American Journal of
Agricultural Economics 93 (2): 297-3009.

Kurkalova, L.A. 2005. Carbon Sequestration in
Agricultural ~ Soils:  Discounting  for
Uncertainty.  Canadian  Journal  of
Agricultural Economics/Revue Canadienne
d’agroeconomie 53 (4): 375-84.

Lankoski, J., and M. Ollikainen. 2003. Agri-

environmental Externalities: A
Framework for Designing Targeted
Policies. European Review of

Agricultural Economics 30 (1): 51-75.

Latacz-Lohmann, U., and S. Schilizzi. 2005.
Auctions for Conservation Contracts: A
Review of the Theoretical and Empirical
Literature (Project No: UKL/001/05).
Report to the Scottish Executive
Environment and  Rural  Affairs
Department. Available at: http://www.
scotland.gov.uk/Publications/2006/02/
21152441/0. Accessed May 2016.

Lichtenberg, E. 2002. Agriculture and the
Environment. Handbook of Agricultural
Economics 2: 1249-313.

Lichtenberg, E., and D. Zilberman. 1988.
Efficient Regulation of Environmental
Health Risks. The Quarterly Journal of
Economics (89): 167-78.

Longstaff, P.H., T.G. Koslowski, and W.
Geoghegan. 2013. Translating Resilience:

A Framework to Enhance
Communication and Implementation,
12-23.  Symposium on Resilience
Engineering.

Lynne, G.D., J.S. Shonkwiler, and L.R. Rola.
1988. Attitudes and Farmer
Conservation  Behavior.  American

Journal of Agricultural Economics 70:
12-19.


http://www.scotland.gov.uk/Publications/2006/02/21152441/0
http://www.scotland.gov.uk/Publications/2006/02/21152441/0
http://www.scotland.gov.uk/Publications/2006/02/21152441/0

1312 October 2016

Maier, H.R., Z. Kapelan, J. Kasprzyk, J.
Kollat, L.S. Matott, M.C. Cunha, and
P.M. Reed.  2014. Evolutionary
Algorithms and other Metaheuristics in
Water Resources: Current Status,
Research  Challenges and  Future
Directions. Environmental Modelling &
Software 62: 271-99.

McSweeny, W.T., and J.S. Shortle. 1990.
Probabilistic Cost  Effectiveness in
Agricultural Nonpoint Pollution Control.
Southern  Journal — of  Agricultural
Economics 22 (1): 95-104.

Millennium Ecosystem Assessment. 2005.
Chapter 12: Nutrient Cycling. Available
at: http://www.millenniumassessment.
org/documents/document.281.aspx.pdf.
Accessed December, 2015.

Mueller, N.D., E.E. Butler, K.A. McKinnon,
A. Rhines, M. Tingley, N.M. Holbrook,
and P. Huybers. 2016. Cooling of US
Midwest Summer Temperature
Extremes from Cropland Intensification.
Nature Climate Change 6 (3): 317-22.

Muller, N.Z., R. Mendelsohn, and W.
Nordhaus. 2011. Environmental
Accounting for Pollution in the United
States  Economy. The  American
Economic Review 101 (5): 1649-75.

Nature as Capital PNAS 100th Anniversary
Special Feature. 2015. Proceedings of the
National Academy of Sciences. Available
at: http://www.pnas.org/cgi/collection/
nature_capital. Accessed January 2016.

Nicklow, J., P. Reed, D. Savic, T. Dessalegne,
L, Harrell, A. Chan-Hilton, M.
Karamouz, et al. 2009. State of the Art for
Genetic Algorithms and Beyond in Water
Resources Planning and Management.
Journal of Water Resources Planning and
Management 136 (4): 412-32.

Paris, Q. 1979. Revenue and Cost
Uncertainty, Generalized Mean-
variance, and the Linear

Complementarity Problem. American
Journal of Agricultural Economics 61 (2):
268-75.

Parkhurst, G.M., and J.F. Shogren. 2007.

Spatial ~ Incentives to  Coordinate
Contiguous Habitat. Ecological
Economics 64 (2): 344-55.

Polasky, S., and K. Segerson. 20009.

Integrating Ecology and Economics in
the Study of Ecosystem Services: Some
Lessons Learned. Annual Review of
Resource Economics 1: 409-34.

Amer. J. Agr. Econ.

Polasky, S., E. Nelson, J. Camm, B. Csuti, P.
Fackler, E. Lonsdorf, and C. Tobalske.
2008. Where to Put Things? Spatial Land
Management to Sustain Biodiversity and
Economic Returns. Biological
Conservation 141 (6): 1505-24.

Politis, D.N., and J.P. Romano. 1992. A
Circular Block-resampling Procedure for
Stationary Data. In Exploring the Limits
of Bootstrap, edited by Raoul, LePage,
and Billard Lynne 263-70. New York:
John Wiley & Sons.

1994. The Stationary Bootstrap.
Journal of the American Statistical
Association 89 (428): 1303-13.

Poojari, C.A., and B., Varghese 2008.
Genetic Algorithm Based Technique for
Solving Chance Constrained Problems.
European  Journal of  Operational
Research 185 (3): 1128-54.

Porto, M., O. Correia, and P. Beja. 2014.
Optimization of Landscape Services un-
der Uncoordinated Management by
Multiple Landowners. PloS One 9 (1):

p.e86001.
Prekopa, A. 1970. On Probabilistic
Constrained Programming. In

Proceedings of the Princeton Symposium
on Mathematical Programming, edited by
Harold W. Kuhn 113-138. Princeton, NJ:
Princeton University Press.

Rabotyagov, S.S. 2010. Ecosystem Services
under Benefit and Cost Uncertainty: An
Application to Soil Carbon
Sequestration. Land Economics 86 (4):
668-86.

Rabotyagov,
Campbell.
Pollution

SS., M.
2010.

Jha, and T.D.

Nonpoint-Source

Reduction for an Iowa
Watershed: An Application of
Evolutionary  Algorithms.  Canadian
Journal of Agricultural Economics/Revue
Canadienne  d’agroeconomie 58 (4):
411-31.

Rabotyagov, S.S., T.D. Campbell, M. White,
J.G. Arnold, J. Atwood, M.L. Norfleet,
C.L. Kling, et al. 2014. Cost-effective
Targeting of Conservation Investments
to Reduce the Northern Gulf of Mexico
Hypoxic Zone. Proceedings of the
National Academy of Sciences 111 (52):
18530-35.

Rabotyagov, S.S., A. Valcu, T. Campbell,
P.W. Gassman, M. Jha, and C.L. Kling.
2014b. An Improved Reverse Auction for
Addressing Water Quality in Agricultural


http://www.millenniumassessment.org/documents/document.281.aspx
http://www.millenniumassessment.org/documents/document.281.aspx
http://www.pnas.org/cgi/collection/nature_capital
http://www.pnas.org/cgi/collection/nature_capital

Rabotyagov, Valcu-Lisman, and Kling

Watersheds using Coupled Simulation-
optimization  Models.  Frontiers  of
Economics in China 9 (1): 25-51.

Roy, A.D. 1952. Safety First and the Holding
of Assets. Econometrica 431-449.

Shortle, J., and R.D. Horan. 2013. Policy
Instruments for  Water Quality
Protection. Annual Review of Resource
Economics 5 (1): 111-38.

Steffen, W., K. Richardson, J. Rockstrém, S.E.
Cornell, I. Fetzer, EM. Bennett, and S.
Sorlin. 2015. Planetary Boundaries: Guiding
Human Development on a Changing
Planet. Science 347 (6,223): 1259,855.

Toth, S.F., and M.E. McDill. 2009. Finding

Efficient Harvest Schedules under Three

Conlflicting Objectives. Forest Science 55

(2): 117-31.

Department of Agriculture—

Conservation Effects Assessment

Project, Wildlife National Assessment.

uU.S.

Resilient Provision of Water Quality from Agriculture

1313

2015. Available at: http://www.nrcs.usda.
gov/wps/portal/nrcs/detailfull/national/
technical/nra/ceap/na/?cid=nrcs143_
014151. Accessed January 2016.

U.S. Environmental Protection Agency.
2015. Available at: http://www2.epa.gov/
nutrientpollution.

Willis, D.B., and N.K. Whittlesey. 1998. The
Effect of Stochastic Irrigation Demands and
Surface Water Supplies on On-Farm Water
Management. Journal of Agricultural and
Resource Economics 23 (1): 206-24.

Zhang, W., T.H. Rickets, C. Kremen, K.
Carney, and S.M. Swinton. 2007. Ecosytem
Services and Dis-services to Agriculture.
Ecological Economics 64 (2): 253-60.

Zitzler, E., M. Laumanns, and L. Thiele. 2002.
Spea2: Improving the Strength Pareto
Evolutionary Algorithm for Multi-objective
Optimization. Evolutionary Methods for
Design, Optimization, and Control 95-100.


http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/nra/ceap/na/?cid=nrcs143_014151
http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/nra/ceap/na/?cid=nrcs143_014151
http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/nra/ceap/na/?cid=nrcs143_014151
http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/nra/ceap/na/?cid=nrcs143_014151
http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/nra/ceap/na/?cid=nrcs143_014151
http://www2.epa.gov/nutrientpollution
http://www2.epa.gov/nutrientpollution

Copyright of American Journal of Agricultural Economicsis the property of Oxford
University Press/ USA and its content may not be copied or emailed to multiple sites or
posted to alistserv without the copyright holder's express written permission. However, users
may print, download, or email articles for individual use.

www.manharaa.com




